
Java program to find inverse of matrix using gauss Jordan method.
import java.util.*;
import java.math.*;
class jordan-1
{
public static void main(String args[])
{
Scanner sc = new Scanner(System.in);
float r11,r12,r13,r14=1,r15=0,r16=0,r21,r22,r23,r24=0,r25=1,r26=0,r31,r32,r33,r34=0,r35=0,r36=1;
float s11,s12,s13,s14,s15,s16,t21,t22,t23,t24,t25,t26,u31,u32,u33,u34,u35,u36;
float v21,v22,v23,v24,v25,v26,w32,w33,w34,w35,w36;
float a12,a13,a14,a15,a16,b33,b34,b35,b36,c13,c14,c15,c16,d23,d24,d25,d26;
System.out.print("Find FIND A^1 BY GAUSS-JORDAN METHOD \n");
System.out.print("Enter 3 element in 1st row= ");
r11=sc.nextFloat();
r12=sc.nextFloat();
r13=sc.nextFloat();
System.out.print("Enter 3 element in 2nd row= ");
r21=sc.nextFloat();
r22=sc.nextFloat();
r23=sc.nextFloat();
System.out.print("Enter 3 element in 3rd row= ");
r31=sc.nextFloat();
r32=sc.nextFloat();
r33=sc.nextFloat();
s11=r11/r11;
s12=r12/r11;
s13=r13/r11;
s14=r14/r11;
s15=r15/r11;
s16=r16/r11;
t21=r21-(r21*s11);
t22=r22-(r21*s12);
t23=r23-(r21*s13);
t24=r24-(r21*s14);
t25=r25-(r21*s15);
t26=r26-(r21*s16);
u31=r31-(r31*s11);
u32=r32-(r31*s12);
u33=r33-(r31*s13);
u34=r34-(r31*s14);
u35=r35-(r31*s15);
u36=r36-(r31*s16);
v22=t22/t22;
v23=t23/t22;
v24=t24/t22;
v25=t25/t22;
v26=t26/t22;
w32=u32-(u32*v22);
w33=u33-(u32*v23);
w34=u34-(u32*v24);
w35=u35-(u32*v25);
w36=u36-(u32*v26);
a12=s12-(v22*s12);
a13=s13-(v23*s12);
a14=s14-(v24*s12);
a15=s15-(v25*s12);
a16=s16-(v26*s12);
b33=w33/w33;
b34=w34/w33;
b35=w35/w33;
b36=w36/w33;
c13=a13-(b33*a13);
c14=a14-(b34*a13);
c15=a15-(b35*a13);
c16=a16-(b36*a13);
d23=v23-(b33*v23);
d24=v24-(b34*v23);
d25=v25-(b35*v23);
d26=v26-(b36*v23);
System.out.print("\nSTEP-1= "+r11+"\t"+r12+"\t"+r13+"\t"+r14+"\t"+r15+"\t"+r16);
System.out.print("\n "+r21+"\t"+r22+"\t"+r23+"\t"+r24+"\t"+r25+"\t"+r26);
System.out.print("\n "+r31+"\t"+r32+"\t"+r33+"\t"+r34+"\t"+r35+"\t"+r36);
System.out.print("\nSTEP-2= "+s11+"\t"+s12+"\t"+s13+"\t"+s14+"\t"+s15+"\t"+s16);
System.out.print("\n "+t21+"\t"+t22+"\t"+t23+"\t"+t24+"\t"+t25+"\t"+t26);
System.out.print("\n "+u31+"\t"+u32+"\t"+u33+"\t"+u34+"\t"+u35+"\t"+u36);
System.out.print("\nSTEP-3= "+s11+"\t"+s12+"\t"+s13+"\t"+s14+"\t"+s15+"\t"+s16);
System.out.print("\n "+t21+"\t"+v22+"\t"+v23+"\t"+v24+"\t"+v25+"\t"+v26);
System.out.print("\n "+u31+"\t"+w32+"\t"+w33+"\t"+w34+"\t"+w35+"\t"+w36);
System.out.print("\nSTEP-4= "+s11+"\t"+a12+"\t"+a13+"\t"+a14+"\t"+a15+"\t"+a16);
System.out.print("\n "+t21+"\t"+v22+"\t"+v23+"\t"+v24+"\t"+v25+"\t"+v26);
System.out.print("\n "+u31+"\t"+w32+"\t"+b33+"\t"+b34+"\t"+b35+"\t"+b36);
System.out.print("\nSTEP-3= "+s11+"\t"+a12+"\t"+c13+"\t"+c14+"\t"+c15+"\t"+c16);
System.out.print("\n "+t21+"\t"+v22+"\t"+d23+"\t"+d24+"\t"+d25+"\t"+d26);
System.out.print("\n "+u31+"\t"+w32+"\t"+b33+"\t"+b34+"\t"+b35+"\t"+b36);
System.out.print("\nA^1="+c14+"\t"+c15+"\t"+c16);
System.out.print("\n "+d24+"\t"+d25+"\t"+d26);
System.out.print("\n "+b34+"\t"+b35+"\t"+b36);
}
}
0 Comments